
Source Code Analysis Tools - Business Case 1
ID: 262-BSI | Version: 4 | Date: 11/14/08 5:14:55 PM

Source Code Analysis Tools - Business Case
Christoph Michael, Cigital, Inc. [vita3] Steven R. Lavenhar, Cigital, Inc. [vita4]

Copyright © 2005 Cigital, Inc.

2005-09-28 L3 / E, L, M5

Organizations are often reluctant to build security into software from the start of the development process.
This reluctance stems from a belief that secure programming would increase costs or cause delays. However,
experience does not seem to bear out this belief. This article presents a case for using security analyzers.

Even in the most meticulous development process, security bugs can slip into the source code. This is
especially true for systems that use legacy software. Defense in depth demands audits of both old and new
software to help ensure that no security problems slip through the cracks.

Security scanners automate some of more repetitive and tedious tasks of source-code security auditing.
Their strength is finding certain bad programming practices that may lead to security vulnerabilities. With
many security analyzers, the rule of thumb is that the easier it would be for an expert to find a security bug,
the easier it is for the security analyzer to find it as well. But the purpose of security analyzers is not to be
smarter than human experts but to be faster.

With advances in technology, security analyzers have progressed in two directions. Some analyzers
specialize in software semantics, trying to predict software behavior through static analysis. Their focus is
reducing false alarms and perhaps even finding some problems that would be harder for a human analyst to
see. There are also security analyzers that position themselves as style-checkers, and they focus on detecting
programming practices that should be avoided in an ultra-paranoid software development setting.

The Case for Software Security Analysis
Management priorities on a software development project are generally schedule, costs, features, and
software quality, in that order. Since schedules tend to be overoptimistic, software quality often gets
dropped, along with other functionality that is invisible to an ordinary user. This also includes software
security.

Organizations are often reluctant to build security into software from the start of the development process.
This reluctance stems from a belief that secure programming would increase costs or cause delays. However,
experience does not seem to bear out this belief. In general, it seems that organizations with a more mature
development process also produce software faster and more cheaply. While past studies have not specifically
focused on software security, there is reason to believe that the same generalization holds true in this area.
For example, rigorous type and style checking often points out possible design improvements that are easiest
to incorporate while the software product is still in the early stages of design.

Static analysis tools support a secure programming effort by finding and cataloging a large number of
potential security bugs. Many times these bugs would be easily spotted by a human auditor, but an analysis
tool makes the process much faster and more systematic. Once this information is available, it can be used to
prioritize risks and thus drive the code-oriented aspects of secure software development.

Static analysis tools identify potential security bugs during the coding process which can result in cost
reductions over the lifetime of the system. According to NIST, the relative cost of repairing software defects
increases the longer it takes to identify the bug [NIST 02]. For example, NIST estimates that it can cost thirty
times more to fix a coding problem that is discovered after the product has been released than it would have
cost if the problem was discovered during unit test or coding.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/251-BSI.html (Michael, C. C.)
4. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/197-BSI.html (Lavenhar, Steven)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/251-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/197-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Source Code Analysis Tools - Business Case 2
ID: 262-BSI | Version: 4 | Date: 11/14/08 5:14:55 PM

When to Use Security Analyzers
Security analyzers are frequently used during source-code audits and walkthroughs. Additionally, most
security scanners can be used by software developers, so they can be integrated into the development
environment. Security analyzers can also make security analysts more efficient.

Like any quality-assurance mechanism, security scanners should be employed as early as possible,
since problems found earlier are usually easier and cheaper to fix. On the other hand, the limitations of
security analyzers also have to be kept in mind. First, security scanners are not intended to detect design-
or architecture-level flaws; they are meant to work on source code. Secondly, security scanners are not
currently well suited for finding integration bugs, so nothing much is gained by putting off their use until late
in the software development life cycle.

Some security scanners are meant to be used as coding-style checkers, but to be efficient in this role they
must be used from the very start of the development phase. Otherwise, it will probably be too expensive to
bring the software into compliance with whatever guidelines the analyzer tries to enforce.

One the other hand, those analyzers that try to deduce software behavior usually emphasize technology that
reduces false alarms (i.e., apparent vulnerabilities that actually turn out to be unexploitable). While not all
tools succeed on this count, reducing false alarms also reduces the amount of work that has to be done to fix
the problems an analyzer finds. While it is not a good practice to postpone security analysis, such analyzers
might still be useful situations where security analysis cannot start during the early development stages, such
as in cases where legacy code has to be audited.

Security analyzers can also be used as “badness-ometers” [McGraw 04], which give an organization some
idea of how bad the security of their software actually is. In principle, security analyzers can be used this
way at any time as long as source code is available, but sooner is better if the organization still hopes to
address the security problems that are uncovered during this process.

Required Skills
Most security analyzers are meant to be used by software developers or others with comparable skills or
experience. Nonetheless, most commercial analyzers also have advanced features that make them more still
more powerful in the hands of software security analysts or persons skilled in source-code analysis.

Potential Benefits
Security analyzers have the following potential benefits:

• reducing costs over the system lifetime. Security vulnerabilities identified early in the life cycle are
cheaper to fix. Static code scanning tools are used to identify potential security vulnerabilities in the
development phase.

• educating developers about secure programming. The list of insecure programming practices is
long and continues to grow each month. This makes it hard for developers to keep track, especially
since most developers are not trained in secure programming. A good security scanner not only
finds problems but explains what is wrong and how to fix it. This provides developers with hands-on
feedback on how to improve their programming practices.

• rechecking legacy code. Even if the legacy code was developed with security in mind, it is inevitable
that new classes of vulnerabilities will have come to light since the code was developed. Security
analyzers can help weed out such problems.

• use as badness-ometers. Security scanners can help measure how bad software is, though there are a
number of reasons that they cannot be used to measure how good the software is.

• automating repetitive and tedious aspects of source-code security audits, freeing up human security
analysts to track down more difficult problems.

Source Code Analysis Tools - Business Case 3
ID: 262-BSI | Version: 4 | Date: 11/14/08 5:14:55 PM

• checking for good programming style from the security standpoint. Here, however, it must be
kept in mind that the analyzer will check for its own idea of what constitutes good style unless it is
customized. Customization can be time consuming and requires a certain amount of expertise.

What Security Analyzers Can't Do
As mentioned above, security analyzers are not designed to find architecture- or design-level flaws, and
they are not well suited for finding integration bugs. Security scanners are also somewhat limited when it
comes to analyzing large systems, such as those consisting of many executable components or heterogeneous
layers.

It should also be emphasized that, just like human auditors, security analyzers do not find all vulnerabilities
in a software system, they find only some. Out of all the vulnerabilities present in a given piece of software,
a security scanner will be able to find only a certain subset, and that subset will never change unless the
scanner is reconfigured or updated with a newer version. After all, the analyzer is just a software application
itself. The remaining problems have to be found by human analysts.

It is therefore important not to rely on security scanners as the sole means of or securing software source
code. Developers will learn to avoid the kinds of problems that are pointed out by the security scanner, and
while this is a good thing, it does not mean that they are also getting better at avoiding other types of security
problems that the analyzer cannot see. Even as some vulnerabilities are being weeded out, the software may
be collecting a cargo of other vulnerabilities that are invisible to the analyzer. Therefore, a security scanner
should not be an organization’s only means of judging the quality of their software. Otherwise, the software
might appear to be improving when in reality it is staying about the same or actually getting worse.

Return on Investment
Most organizations find that false alarms are a serious obstacle to the satisfactory use of security analyzers.
The problem is that in a large software system, it is expensive to go through the analyzer’s output and
separate the false alarms from the real vulnerabilities. On the other hand, it can also be expensive to fix every
potential security bug regardless of whether it is a false alarm. In many software systems, modularity and
efficiency considerations also make it undesirable to fix every unexploitable security bug.

False alarms are a particularly serious problem with the most popular freeware security analyzers. With a
handful of exceptions, no work has been done on these analyzers since about 2001, and their technology is
considered obsolete by most security professionals. Some commercial tool vendors are actively working to
develop technology that reduces false alarms, with varying degrees of success. When evaluating a security
analyzer, an organization should be aware of how many false alarms they can expect and whether it will be
cost-effective to deal with those false alarms.

In spite of these considerations, most security analyzers provide built-in documentation that says why
something is a potential security bug and how to fix it. This is true even for the older freeware analyzers.
Therefore, these analyzers can still be a learning tool for software developers.

False alarms are less of a problem when a security analyzer is used to check coding style. Organizations that
use a security analyzer in this way are usually willing to put in the extra time needed for highly defensive
programming, and making the software extremely efficient might not be their biggest priority either. One
way to get an idea of the effort needed for this is to enable all compiler warnings and try to write code that
generates no warnings when compiled in this way.

It bears emphasizing that when a security analyzer is used as a style checker, it will point out many issues
that do not lead to true vulnerabilities. The thing to keep in mind is that security analyzers examine software
at a very low level, so they cannot determine whether a potential vulnerability is forestalled at the design
or architecture level. In a sense, security style checkers insist that certain security requirements be enforced
at a highly granular level in the source code, even if the software design calls for those requirements to be
implemented in some other way.

Source Code Analysis Tools - Business Case 4
ID: 262-BSI | Version: 4 | Date: 11/14/08 5:14:55 PM

When using a security analyzer as a badness-ometer, it must be kept in mind that there is no actual science
behind the practice of badness-ometering, nor do tool vendors actively strive to make their tools better in this
role. Therefore, no real basis exists for preferring one tool over another as a badness-ometer. It may not be
cost-effective to invest in an expensive commercial tool if it will be used only for this purpose.

References

[NIST 02] NIST. The Economic Impacts of Inadequate
Infrastructure for Software Testing (Planning
Report 02-3). Gaithersburg, MD: National Institute
of Standards and Technology, 2002. http://
www.nist.gov/director/prog-ofc/report02-3.pdf.

[McGraw 04] McGraw, Gary. “Application Security Testing Tools:
Worth the Money?” Network Magazine, November
1, 2004. http://www.networkmagazine.com/
showArticle.jhtml?articleID=49901410 (2004).

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

